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SUMMARY

A new finite element method is presented to solve one-dimensional depth-integrated equations for fully
non-linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual
method is used. The weak forms of the governing equations are arranged in such a way that the shape
functions can be piecewise linear, while the weighting functions are piecewise cubic with C2-continuity.
For the time integration an implicit predictor–corrector iterative scheme is employed. Within the
framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error
at a node. The leading truncation error is fourth-order in terms of element size. Numerical stability of the
scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable.
By increasing the number of iterations and/or decreasing the element size, the stability characteristics are
improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary
condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the
range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many near-shore hydrodynamic processes, such as wave shoaling, wave breaking and wave
agitations in a harbor, non-linearity and frequency dispersion are equally important. In recent
years, several mathematical models have been proposed to describe fully non-linear and weakly
dispersive wave propagation [1–4]. High-order finite difference schemes have been imple-
mented to find solutions of these mathematical models [5–7]. However, difficulties in modeling
irregular geometries in two space dimensions with structured finite difference grids can lead to
a loss of accuracy in these schemes.
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The alternative is to use unstructured finite element methods (FEM) to model the wave
propagation in a geometrically complex domain. Due to the flexibility of an unstructured grid
system, an additional benefit for using FEM is that the number of nodal points can be
minimized by using a fine resolution only in the region of interest or in the region with rapidly
changing depth. Several FEM models have been developed for the conventional Boussinesq
equations, in which non-linearity and frequency dispersion are equally weak [8–12]. The
primary differences among these models are the time integration scheme and the type of finite
elements used. However, since the highest order of spatial derivatives in the Boussinesq
equations is only second order, all the existing FEM models used either linear triangular
elements or linear rectangular elements.

It is only recently that research papers have been published on FEMs for extended
Boussinesq equations in which additional frequency dispersion terms are added to the
conventional Boussinesq equations so that the resulting model equations are applicable in
relatively deep water. Since the highest spatial derivative term in the extended Boussinesq
equations is third order, the linear Galerkin FEM can no longer be applied directly. A
common approach to reduce the order of differentiation is to introduce auxiliary variables,
which are first or second spatial derivatives of the free surface displacement and/or the velocity
components, depending on the formulation. While linear elements can be used, additional
unknowns and equations must be solved in the resulting coupled systems [13–15].

It appears that no attempt has been made to develop an FEM for the fully non-linear and
weakly dispersive wave equations. In the governing equations for fully non-linear waves, the
third spatial derivatives appear in both momentum and continuity equations. In this paper, we
develop a Petrov–Galerkin weighted residual method to solve the one-dimensional problem.
The weak forms of the governing equations are arranged in such a way that piecewise linear
shape functions and piecewise cubic spline weighting functions can be applied. The proposed
spatial discretization methods are similar to those introduced by Sanz-Serna and Christie [16]
for the KdV equation. Moreover, in the present FEM formulation, the product approximation
is used for the treatment of non-linear terms. The product approximation has been successfully
applied to a number of non-linear problems [17], including the KdV equation [16] and the
non-linear Schrödinger equation [18].

This paper is organized in the following manner. In the following section, the governing
equations for fully non-linear and weakly dispersive waves are summarized. In Section 3, the
proposed numerical scheme is discussed in detail. The accuracy and the stability characteristics
of the proposed numerical scheme are also discussed. Numerical examples are given in Section
4, which demonstrate the range of applicability and the accuracy of the proposed numerical
scheme. In Appendix A, the detailed information for the mass matrix, forcing vector and
boundary vector for the matrix equation are given.

2. ONE-DIMENSIONAL GOVERNING EQUATIONS FOR FULLY NON-LINEAR
AND WEAKLY DISPERSIVE WAVES

The physical system can be characterized by a typical wave amplitude, a, a typical water depth,
h0, and a typical wave number, k0. Two dimensionless parameters
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�=
a
h0

(2.1)

and

�2= (k0h0)2 (2.2)

represent the non-linearity and frequency dispersion in the system espectively. The Boussinesq
wave theory requires O(�)�O(�2)�O(1) so that the theory can be only applied in fairly
shallow water and for weakly non-linear waves. For the fully non-linear and weakly dispersive
wave theory, the non-linear effects are completely retained, i.e., O(�)=O(1), while the
frequency dispersion is still assumed to be weak, i.e., O(�2)�O(1). The governing equations
for fully non-linear and weakly dispersive waves have been derived by several researchers
[1–4]. In this paper, only the one-dimensional problems are investigated.

Following Liu’s [1] notation, the one-dimensional continuity and momentum equations can
be expressed as
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where � is the free surface displacement, u� the horizontal velocity evaluated at z=z�, h the
water depth, and z the co-ordinate measured upwards from the still-water level. We remark
here that although the order of accuracy of the above equations is of O(�4), the linear
dispersion characteristics of these equations can be improved further by choosing z� properly.
For instance, Chen and Liu [19] suggested that in order to apply these equations in the
intermediate to deep-water, the optimal value for z� should be −0.52h. Detailed discussions of
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this choice are given in Chen and Liu [19] and Nwogu [20]. It is reiterated here that the third
spatial derivatives of the velocity appear in both governing equations.

3. NUMERICAL SCHEMES

In this section, the spatial and time integration schemes used to find solutions for (2.3) and
(2.4) are discussed.

3.1. Petro�–Galerkin FEM

Within the computational domain, 0�x�L, a weighted residual method is used. Thus,
requiring the weighted residuals of the governing equations (2.3) and (2.4) to be zero results in
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0
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in which w is the weighting function. The third-order spatial derivatives appearing in both
(2.3) and (2.4) complicate the situation. If the conventional Galerkin method is used, i.e., the
shape function is the same as the weighting function, higher-order finite element approxima-
tions, such as the C1 Hermite cubic polynomial or the C2 cubic spline, must be employed.
This could be computationally expensive for two-dimensional problems. An alternative is to
use the Petrov–Galerkin method, in which weighting functions are different from shape
functions. To take full advantage of the Petrov–Galerkin method, the weak forms of (3.1)
and (3.2) are modified by performing integration by parts. Thus, using (2.3) in (3.1), one
obtains
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Similarly, (3.2) can be rewritten as
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and u� �=�u�/�t and �� =��/�t. Note that in (3.3) and (3.4), the second-order spatial derivatives
have been switched from dependent variables, u� and �, to the weighting function w. Thus, the
dependent variables are required to be only once differentiable. In other words, we can now
choose the shape function for dependent variables as piecewise linear with C0 continuity, while
the weighting function as piecewise cubic with C2 continuity.

For spatial approximation, the computational domain is divided into J elements of length
�xj=xj−xj−1, j=1, 2, . . . , J. The time step size �t is assumed to be a constant. The
dependent variables are represented in the form of a linear combination of shape functions
(�j(x)), which is now different from the weighting functions (�j(x)), and the corresponding
nodal values ({�}j

n, {u�}j
n) as follows:
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where n=0, 1, 2, . . . , representing the time level. The water depth is also approximated with
the same set of shape functions, i.e.,

h(x)= �
J

j=0

�j(x){h}j (3.6c)

Substituting (3.6) into the weak forms, (3.3) and (3.4), we obtain the following matrix
equations:

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 541–575



PETROV–GALERKIN FINITE ELEMENT MODEL 547

�
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in which i=0, 1, 2, . . . , J. In the above equations, [M�]ij and [Mu]ijn are the mass matrices,
{ f �}i

n and { f u}i
n the forcing vectors and {q�}i

n and {qu}i
n the boundary vectors. The detailed

expressions for these matrices and vectors are given in Appendix A. For the interior elements,
the boundary vectors {q�}i

n and {qu}i
n vanish because contributions from two adjacent elements

cancel each other out. Only at the boundary points, j=0 and J, do non-zero values exist for
these boundary vectors. The proper treatment of the boundary conditions will be discussed in
a later section.

As shown in Appendix A explicitly, the second derivatives are only required for the
weighting functions. Thus, we have chosen the typical linear C0-type shape function and the
cubic B-spline C2-type weighting function in the following analysis. The one-dimensional cubic
B-spline function �i extends over the interval [xi−2, xi+2] of four neighboring elements with
the knot x=xi as the center. The global shape function (�i) and global weighting function (�i)
are displayed in Figure 1. It is customary to express the element shape function and element
weighting function in terms of the local co-ordinate �, (−1���1), defined over each
element in the form
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The numerical integration is performed using Gauss–Legendre scheme after the global
co-ordinate (x) is mapped into the element co-ordinate (�).

Using this combination of shape and weighting functions provides several advantages. First,
the number of unknown variables and governing equations in the present model is two, which
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Figure 1. Linear shape function and cubic B-spline weighting function: (a) the global shape function at
node i ; (b) the global weighting function at node i.

is smaller than that in other FEM models, where auxiliary variables and equations are used.
For example, Li et al. [14] and Walkley and Berzins [15] need three equations for three
unknown variables for weakly non-linear one-dimensional problem. Secondly, the present
approach can effectively deal with highly non-linear terms of the order of O(�2�2) and O(�3�2).
If we follow Li et al.’s [14] approach, those higher-order terms must be expanded in terms of
the auxiliary variable, which leads to significant increase in the number of terms in the weak
form. On the other hand, if Walkley and Berzins’ [15] approach is followed, it is inevitable to
introduce one more auxiliary variable to deal with the O(�2�2) and O(�3�2) terms in the
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momentum equation, so that there will be four equations for four unknowns. The third
advantage is due to the fact that the linear shape function is used in the present Petrov–
Galerkin FEM. Compared with the cubic spline Galerkin method, in which the cubic B-spline
function is used as a shape function (Gardner and Gardner [21]), the bandwidth of mass
matrix ([M�], [Mu]) is reduced. For the one-dimensional problem, the bandwidth is reduced
from 7 in the cubic spline Galerkin method to 5 in the present Petrov–Galerkin method.
Finally, when the linear shape function is used, it is straightforward to implement the essential
boundary condition. In other words, if the dependent variables are known a priori at the
boundary, nodal values at that point are directly determined from the known dependent
variables. However, when cubic B-spline shape function is used, nodal values at the boundary
are not clearly determined by the known physical variables.

3.2. Time integration scheme

In this section, we shall describe the Adams–Bashforth–Moulton predictor–corrector scheme
to integrate (3.7) and (3.8). For the predictor step, the third-order Adams–Bashforth scheme
is employed
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Solving the above equations, one obtains solutions for the first predicted values, {�}j(0)
n+1 and

{u�}j(0)
n+1 at the jth node and (n+1)th time step. Using these values, the forcing vectors and the

mass matrix are updated at the (n+1)th time level; i.e., { f �}i(0)
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The corrected solutions are then obtained by applying the fourth-order Adams–Moulton

corrector method. The subsequent iteration procedure can be explained as follows. To obtain
the sth corrected value for {�}j(s)

n+1, in which s denotes the number of iteration (s=1, 2, . . . ),
the continuity equation (3.7) is integrated in the following manner:
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The relative errors between two successive correction steps are defined as
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The corrector step continues until both �eu and �e� are less than 10−4.

3.3. Truncation error analysis

Since third-order spatial derivatives appear in both governing equations, any sensible numeri-
cal scheme should be at lest fourth-order accurate in space. In this section, we examine the
leading order truncation error of the proposed scheme, following the accuracy analysis
suggested by Sanz-Serna and Christie [16]. To simplify the analysis, we focus on the linearized
version of the governing equations (2.3) and (2.4) with a constant water depth, i.e.
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where

K1=C6h3, K2=C5h2 (3.17)

�, C5 and C6 have been defined in (3.5). Applying the Petrov–Galerkin scheme as described
in Section 3.1 with linear shape functions and cubic B-spline weighting functions to (3.15) and
(3.16), we obtain the following equations at an internal node j :
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in which �x is the uniform element size. We remark here that (3.18) and (3.19) are subsets of
(3.7) and (3.8), in which the non-linear terms, varying water depth and the boundary effects are
all excluded.

Using the Taylor series expansions in space, we can rewrite (3.18) and (3.19) in the following
forms:

L� �=L�+
(�x)2

4
�2

�x2 (L�)+ (�x)4� 7
240

�4��
�x4+

7h
240

�5u�

�x5 +�2 K1

40
�7u�

�x7

�
+O(�x)6 (3.20)

L� u=Lu+
(�x)2

4
�2

�x2 (Lu)+ (�x)4� 7
240

�4u� �
�x4 +

7
240

�5�

�x5+�2 11K2

360
�6u�

�x6

�
+O(�x)6 (3.21)

The modified partial differential equations (PDEs), L� �=0 and L� u=0, are different from the
original PDEs, L�=0 and Lu=0. The leading truncation error is of O(�x)4. Also, note that
the leading truncation error is in the form of fourth-order spatial derivative. Therefore, the
frequency dispersive behavior in the governing equations, which are represented by the second-
and third-order spatial derivative terms, is not significantly affected by the numerical error.

3.4. Stability analysis

A Von Neumann stability analysis has been performed for the proposed time integration
scheme. Once again the analysis is only applicable to the linearized version of the governing
equations with a constant depth. Assuming that the solutions at the time step, n�t and the jth
node can be expressed in terms of a Fourier component as

{�}j
n=�0�

n ei� 	( j�x) (3.22a)

{u�}j
n=u0�

n ei� k( j�x) (3.22b)

where �0 and u0 are the amplitudes of the Fourier component for � and u�, respectively, � is
the amplification factor, 	 the wave number of the Fourier component and i� the imaginary
constant. By substituting (3.22) into the numerical scheme for the predictor step, i.e., (3.10)
and (3.11), we can find the relationship between (�0, u0) and ({�}j(0)

n+1, {u�}j(0)
n+1)

{�}j(0)
n+1= [�2�0+D4(23�2−16�+5)u0]�n−2 ei� 	( j�x) (3.23a)

{u�}j(0)
n+1= [D5(23�2−16�+5)�0+�2u0]�n−2 ei� 	( j�x) (3.23b)

in which

D0=
1
60

[cos(2	�x)+26 cos(	�x)+33] (3.24a)
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D1=
i�

12�x
[sin(2	�x)+10 sin(	�x)] (3.24b)

D2=
1

6�x
[cos(2	�x)+2 cos(	�x)−3] (3.24c)

D3=
i�

(�x)3 [(sin(2	�x)−2 sin(	�x)] (3.24d)

D4= −
�t
12
�hD1+�2K1D3

D0

�
(3.24e)

D5= −
�t
12
� D1

D0+�2K2D2

�
(3.24f)

For the first corrector step (s=1 in (3.12) and (3.13)), the above expressions are used
for evaluating { f �}j(0)

n+1 and { f u}j(0)
n+1. We obtain the relationships between (�0, u0) and

({�}j(1)
n+1, {u�}j(1)

n+1)

{�}j(1)
n+1=

��
�2+

9
2

D4D5(23�2−16�+5)
n

�0+
D4

2
[9�2+19�2−5�+1]u0

�
�n−2 ei� 	( j�x)

(3.25a)

{u�}j(1)
n+1=

�D5

2
[9�2+19�2−5�+1]�0+

�
�2+

9
2

D4D5(23�2−16�+5)
n

u0
�

�n−2 ei� 	( j�x)

(3.25b)

Repeating the procedure for the successive corrector step, we can construct relationships
between (�0, u0) and ({�}j(s)

n+1, {u�}j(s)
n+1). Finally, we replace {�}j(s)

n+1 and {u�}j(s)
n+1 by the Fourier

component forms as shown in (3.22). This leads to a 2×2 homogeneous matrix equation for
(�0, u0). The determinant of the matrix equation, which is a sixth degree polynomial in �, must
be zero for non-trivial solutions for u0 and �0. The amplification factor �, which is assumed to
be a complex quantity, can be found by solving the resulting equation numerically. We remark
here that in the resulting equation for � there are three free parameters, 	�x, Courant number
Cr=	gh�t/�x and �x/h. Moreover, the precise expression of the equation depends on the
number of iterations.

Some of the results for the amplification factor are shown in Figure 2. By using Cr=1 and
�x/h=0.2, Figure 2(a) shows the variation of the largest modulus of the amplification factor
at different iteration step as a function of 	�x. The notation 1st in the figure denotes the first
corrector step. In other words, the predictor step is always performed first. The upper bound
of the abscissa represents the wave component with wavelength of 2�x. The amplification
factor approaches unity rapidly from the first corrector step to second corrector step. At third
corrector step, the amplification factor is slightly bigger than unity in the intermediate wave
range and this feature does not change up to the ninth iteration corrector step, at which the
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Figure 2. The amplification factor at different iteration and Courant number.
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maximum �=1.004 occurs at 	�x=2.175. By reducing the element size to �x/h=0.02, the
stability of the first corrector improved (Figure 2(b)). However, the overall variation of
amplification factor in terms of number of iteration is not affected much.

For various Courant numbers, the amplification factor of the ninth iteration is shown in
Figure 2(c) and (d). The numerical scheme is stable as long as the Courant number is less than
0.5 and if nine iterations are performed at each different time step. The difference of the
maximum amplification factor at Cr=0.7 and 0.5 is just 0.03 per cent. Figure 2(e) and (f)
shows the variation of the amplification factor in terms of iteration number at different
Courant number and element size, which assures our stability criteria.

3.5. Boundary conditions

Appropriate boundary conditions are needed to obtain proper numerical solutions for wave
propagation in a finite computational domain. Here, we shall discuss two kinds of boundary
conditions, i.e., an incident wave boundary condition and the perfect reflecting boundary
condition.

3.5.1. Incident wa�e boundary condition. At the incident wave boundary, the time series of �

and u are known. Since the nodal value at the boundary is known, it is regarded as an essential
boundary condition. The following procedure is used to implement the boundary condition in
the Petrov–Galerkin method with the implicit time integration scheme.

Suppose that the time histories of � and u at node number m are given. As shown in the
previous section, Equation (3.7) is solved for {�}j

n+1. Since {�}j=m
n+1 is known, the matrix [M�]ij

and vector { f �}i
n should be modified. Specifically, the elements of the mth row of [M�] are set

to zero, except for the element [M�]mm, which is set to unity. The mth row of the vector
{ f �}i=m

n is also replaced by the following known information:

{ f �}m
n =

�{�}m
n+1*−{�}m

n

�t
�

(3.26)

where {�}m
n+1 * is the known value at next time step. For the predictor step of continuity

equation (3.10), the mth row of the matrix equation becomes

[0 0 ··· 1 ··· 0 0]
�{�}m(0)

n+1−{�}m
n

�t
�

=
�{�}m

n+1*−{�}m
n

�t
�

(3.27)

in which the ‘1’ locates at mth column. Consequently, the boundary condition for {�}m
n+1 has

been applied. The same approach is applied to the momentum equations and the subsequent
iterative corrector procedure.

If the incident wave boundary is located at the left-hand side of the computational domain,
the given surface elevation and velocities are assigned to nodal values at j=0 and 1. The
solution at node j=2, where the real computational domain begins, depends on these two
nodal values. Because the weighting function is distributed over four elements (five nodes, see
Figure 1(b)), nodal values at j=0, 1 are coupled with the nodal value at j=2. We should
remark here that imposing two adjacent Dirichlet conditions is similar to specifying a first
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spatial derivative at the boundary. This may lead to difficulties for non-linear wave input,
similar to those encountered from imposing solution and its derivative at a single point.
However, by increasing the number of nodes where the Dirichlet conditions are applied, we
can increase, in principle, the accuracy of spatial derivative at the boundary.

3.5.2. Reflecti�e wall boundary. To satisfy the no-flux boundary condition approximately, the
depth-averaged velocity, ū, must vanish. Since the relationship between ū and u� can be
rewritten as

ū=u�+
�2

2
(z�

2−z2)
�2u�

�x2 +�2(z�−z)
�2hu�

�x2 (3.28)

both u� and �2u�/�x2 must be zero under the assumption of constant depth near the boundary.
The normal gradient of surface elevation is also zero up to the leading order of the Boussinesq
approximation. These conditions can be implemented by the method of image.

Suppose that the node at j=J−2 is the wall boundary. Therefore, the following is true:

{u�}J−2=0 (3.29a)

{u�}J−1= −{u�}J−3 (3.29b)

{u�}J= −{u�}J−4 (3.29c)

{�}J−1={�}J−3 (3.29d)

{�}J={�}J−4 (3.29e)

We can apply the essential boundary condition for {u�}J−2 and the natural boundary
condition for {�}J−2. To satisfy the natural boundary condition for {�}J−2, we treat two
additional nodes j=J−1, J as essential boundary condition. We can solve for {�}J−2.

The general procedure for dealing with the essential boundary condition is similar to the
incident wave boundary condition discussed in the previous section, except the fact that now
the nodal value where the essential boundary is applied is not known a priori. They should be
solved together with the prescribed condition.

If we apply the iterative (implicit) time integration scheme, the boundary conditions
indicated above can be dealt with in such a way that (after modifying the matrix for the
corresponding row)

[Mu]J−2 j
n �{u�}J−2(s)

n+1 −{u�}J−2
n

�t
�

={ f u}J−2
n =

�0−{u�}J−2
n

�t
�

(3.30a)

[Mu]J−1 j
n �{u�}J−1(s)

n+1 −{u�}J−1
n

�t
�

={ f u}J−1
n =

�−{u�}J−3(s−1)
n+1 −{u�}J−1

n

�t
�

(3.30b)
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[Mu]J j
n �{u�}J(s)

n+1−{u�}J
n

�t
�

={ f u}J
n=

�−{u�}J−4(s−1)
n+1 −{u�}J

n

�t
�

(3.30c)

[M�]J−1 j
n �{�}J−1(s)

n+1 −{�}J−1
n

�t
�

={ f �}J−1
n =

�{�}J−3(s−1)
n+1 −{�}J−1

n

�t
�

(3.30d)

[M�]J j
n �{�}J(s)

n+1−{�}J
n

�t
�

={ f �}J
n=

�{�}J−4(s−1)
n+1 −{�}J

n

�t
�

(3.30e)

where Equations (3.30a)– (3.30e) represent the conditions described in Equations (3.29a)–
(3.29e) respectively.

4. NUMERICAL RESULTS

4.1. Solitary wa�e propagation o�er constant depth

The small amplitude solitary wave can propagate over a long distance without changing shape.
The present numerical scheme is first tested for this case. To avoid potential complications
caused by the boundary conditions, the theoretical surface profile and the corresponding
velocity field for a solitary wave are used as the initial conditions.

The approximate solitary wave solution of Nwogu’s [20] extended Boussinesq equations was
derived by Wei and Kirby [6]

�=A1 sech2[B(x− c̃t)]+A2 sech4[B(x− c̃t)] (4.1)

u=A sech2[B(x− c̃t)] (4.2)

where

c̃=	(gh0)c (4.3a)

A1=
h0

3
� c2−1

C6−C5c
2

�
(4.3b)

A2= −
h0

2
�c2−1

c
�2�C6+C5c

2

C6−C5c
2

�
(4.3c)

A=	gh0
�c2−1

c
�

(4.3d)

B=
1

2h0


� c2−1
C6−C5c2

�
(4.3e)

The parameter c is decided by solving
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2C5(c2)3−
�

3C5+
1
3
+2
C5

�
(c2)2+2
C6(c2)+C6=0 (4.3f)

The computational domain is made large enough so that both the free surface displacement
and the velocity vanish at the boundary throughout the entire numerical simulation. Figure
3(a) shows a snap shot of the solitary wave with amplitude 0.1 m over constant depth of 1 m.
The crest of the initial solitary wave is located at x=0. Therefore, at the moment shown in
Figure 3, the wave has traveled a distance close to one thousand water depths. In the
numerical computations �x=0.4 m and �t=0.06 s are used. The ‘wavelength’, �, is defined
as the width under the solitary wave where �/h0�0.001 (Goring [22]). It is estimated as 30.3

Figure 3. Solitary wave propagation over constant depth: — present numerical result; - - - analytical
solution.
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m and the corresponding ‘wave period’ (T) is calculated from the linear dispersion relation as
9.2 s. There are about 75 elements within the solitary wave. Because the wave amplitude is
quite small, the numerical results are almost identical to the theoretical solution, which is also
plotted in Figure 3(a).

For a larger solitary wave with 0.3 m amplitude, a slight phase error appears (Figure 3(b)).
The phase speed is slightly smaller than the theoretical one and the maximum amplitude is
also slightly overpredicted. This result agrees with other numerical solutions [6,14,15].

If the initial wave amplitude of the solitary wave is increased to 0.6 m (
=0.6) in the
numerical simulation, a small oscillatory tail develops behind the main wave and the wave
height increases by 10 per cent at the beginning of the computation. The oscillatory tails
appear because the analytical solution for solitary wave, given in (4.1) and (4.2), is no
longer valid for such a large wave amplitude. The numerical model adjusts the mismatch
between the initial conditions and the model equations and finally produces a permanent-
form solitary wave-like solution. This numerical solitary wave solution is compared with
those of different numerical models with different governing equations (Figure 4). These
models include the boundary element method (BEM) for a fully non-linear potential flow
[23], the finite difference method (FDM) of extended Boussinesq equations [20], and the
finite difference method of fully non-linear and weakly dispersive equations [2]. The
calculated results from other numerical models are obtained by digitizing the plots presented
in Wei et al. [2]. The present finite element solutions are very close to those of other numerical
models.

Figure 4. Comparison of different numerical solutions for solitary wave with 
=0.6. FN FEM: fully
non-linear Boussinesq FEM; FN FDM: fully non-linear Boussinesq FDM [2]; FN BEM: fully non-linear

potential flow BEM [23]; WN FDM: weakly non-linear FDM [20].
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4.2. Solitary wa�e shoaling on slopes

Numerical simulations for the shoaling of a non-breaking solitary wave over plane slope are
performed. Through this analysis, the non-linear portion of the present numerical model can
be examined. The test case chosen here is the same as the one studied by Wei et al. [2].

The crest of the initial solitary wave is located at x=0, where the beach slope (1:35) begins.
The water depth is 0.71 m at x/h0=10 and 0.2 m at x/h0=28. The incident wave height is

=0.2. In numerical computations, T/dt=150 and �/�x=80 are used. As shown in Figure
5, the present numerical solutions agree well with those of other fully non-linear models in
terms of wave amplitude and the free surface shape. The dimensionless time (t �) and
co-ordinate (x �) have been scaled by 	(h0/g) and h0 respectively.

When t �= t3, the maximum relative wave height, 
max (=amax/h) is 1.06. The present
numerical results reach 
max=1.4, a theoretical breaking index [24] at t �=25.36 and x �=25.5,
which is slightly earlier than t �=25.94 and x �=25.9, as suggested by Wei et al. [2]. After the
solitary wave passes this point, wiggles starts to emerge at the crest. At t �= t4=25.93, the
present numerical wave form shows small discontinuity.

4.3. Fission of solitary wa�e

It has been found theoretically and experimentally that a solitary wave, traveling from one
constant depth to another smaller constant depth, disintegrates into several solitons of
different sizes, which is called the fission phenomenon. Figure 6 shows the evolution of a
solitary wave propagating over a slope onto a shallower depth. The numerical results are
calculated using T/dt=100 and �/�x=50. The 
 of the incoming wave at x/h0=0 is 0.12 and

Figure 5. Comparison of spatial profile of solitary wave shoaling on 1:35 slope with 
=0.2 at different
time step (t �= t1=16.24, t2=20.64, t3=24.03, t4=25.93). See Figure 4 for abreviations.
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Figure 6. Fission of a solitary wave propagating over an 1:20 slope onto a shallower depth.
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the varying depth exists from x/h0=10 to x/h0=15, with the slope of 1:20. The fission process
is well demonstrated. In Figure 7, the numerical results of the present model are compared
with those of Navier–Stokes equations model [25]. Agreement among the numerical results is
excellent.

4.4. Propagation of deep water wa�e

A numerical experiment is performed to evaluate the ability of simulating the propagation of
periodic waves in deep water. The sinusoidal wave with wavelength 2 m and waveheight 0.1 m
is given as an initial condition over the constant water depth of 1 m. The rightmost 1/4
wavelength of the initial condition are tapered off using a sech2(0.5kx) to avoid the abrupt
changes of the water surface at the edge. Since kh=3.14 in this case, the conventional
Boussinesq equations are not the appropriate model for its dispersion relation does not
converge if kh�3.016.

Figure 8 shows the spatial profiles of the propagating waves at different instances. The
vertical line denotes the location of a wave crest at different times according to the exact phase
speed calculated from the linear dispersion relationship. The phase speed of the present model
agrees very well with the exact phase speed.

4.5. Wa�e–wa�e interaction

By simulating the collision of two solitary waves propagating in opposite directions, the
capability of the numerical model in dealing with non-linear wave–wave interactions can be
tested. Two identical solitary waves with 
=0.6 are introduced in a constant water depth (see
Figure 9). In the computations, T/dt=120 and �/�x=70 are used. As mentioned before,
because of the inadequacy of the solutions to describe the large solitary wave, small oscillatory
tails are generated initially. After these tails are separated from the numerically generated
solitary wave, the process of collision and passing of two solitary waves is well represented.

4.6. Applications of the boundary conditions

The incident wave boundary and the perfect reflecting wall boundary condition are imple-
mented in a simple wave tank. First, a solitary wave of amplitude 0.1 m over the constant
water depth of 1 m is generated through the left-hand boundary and is reflected totally from
the right-hand boundary. In the computations T/dt=120 and �/�x=70 are used (Figure 10).
The numerical results show that the numerical schemes for the incident wave boundary and
reflective wall boundary perform well for solitary wave of 
=0.1.

To check further the accuracy of the reflected wall boundary condition, a solitary wave is set
free to propagate between two perfectly reflecting walls. The initial solitary wave of 
=0.1 is
given with the crest at x/h0=0. The computational domain is −17�x/h0�17. The time
history of the free surface elevation and velocity at the center of the tank (x/h0=0) are plotted
in Figure 11. The computations were performed up to 40 wave periods, during which time the
wave has moved forward and backward seven times. The maximum amplitude and velocity at
different period remain almost constant over the whole computational period.
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Figure 7. Comparison of time history of free surface at x/h0=27, 57 and 70: - - - present numerical
result; — Lin and Liu [25].
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Figure 8. Numerical solutions of the extended Boussinesq equations model for the propagation of a deep
water wave (kh=3.14).

To test the suitability of the incident wave boundary for periodic waves in inter-
mediate water depth, the sinusoidal wave of kh=1.25, ka=0.01 is generated (Figure 12).
The numerical model predicts the general features of incident waves reasonably well.
However, small element-size oscillations are generated near the incident wave boundary
during the initial stage. Once they are generated, these high frequency waves seem to persist
throughout the whole computation since the present model does not have any dissipation
mechanism.

4.7. Periodic wa�e propagation o�er a bar

As shown in Figure 13, laboratory experiments have been carried out to examine the
transformation of a periodic wave train over a submerged bar [26]. The experimental data
have been used by several researchers to check the accuracy of their numerical models.
Because of the wave decomposition taking place in the deepening region behind the bar, the
wave form changes rapidly. This phenomenon can be simulated accurately only by a
sufficiently non-linear model with accurate dispersion relations.

The sinusoidal wave with wave period T=2.857 s, wavelength �=7.71 m, and wave
amplitude a=0.04 m is generated at the left-hand boundary and the computational domain is
large enough so that the wave is not affected by the right-hand boundary. �x=0.1 m,
�t=0.02 s are used so that �/�x=77 and T/�t=140. Figure 14 shows the comparison of
time histories of free surface profile between experimental data and numerical results at
x=20.04, 24.04, 26.04, 33.64, 37.04, and 41.04 m respectively.
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Figure 9. Interactions of solitary waves propagating in the opposite direction.
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Figure 10. Numerical simulation of solitary wave propagation with incident and reflective boundary
conditions (
=0.1).
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Figure 11. Time history of free surface, and velocity at x=0. For the solitary wave with two reflective
boundary condition (
=0.1).

Up to x=26.04 m, the comparisons between numerical solutions and measurements show
good agreement in terms of maximum wave height and phase. The numerical model correctly
resolves the higher-harmonics generation due to the nonlinear interaction at the upward slope.
However, after x=26.04 m, the higher-harmonic components, which become very quickly free
at the downward slope, are not correctly resolved by the numerical model. As we can see in
the spectral analysis (Figure 15), these free components mainly contribute to the energy
distribution at frequency higher than 1 Hz. For the 1 Hz wave component, kh=3.46, which
is greater than the deep water limit, kh=3.14. In other words, the high frequency wave
components are beyond the limit of the accuracy of our governing equations, where the
frequency dispersion is weak.
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Figure 12. Sinusoidal intermediate water wave propagation through incident wave boundary condition
(kh=1.25, ka=0.01).
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Figure 13. Layout of the submerged bar experiment (from Dingemans [26]).

5. CONCLUDING REMARKS

We have developed a Petrov–Galerkin finite element model for the one-dimensional fully
non-linear and weakly dispersive wave equations. The shape functions are piecewise linear,
while the weighting functions are piecewise cubic with C2 continuity. The fourth-order
Adams–Bashforth–Moulton predictor–corrector scheme is used for the time integration.
Through the truncation error analysis and Von Neumann stability analysis, we have shown
that the proposed scheme is fourth-order accurate in space and unconditionally stable with
Courant number less than 0.5.

The numerical results for small amplitude solitary wave propagating over a distance of 1000
water depths showed that the present model is stable and conservative. The comparisons have
also been made with numerical solutions, obtained from other numerical schemes, for the large
amplitude solitary wave propagation, the shoaling of solitary wave, and the fission of solitary
wave. The good agreement confirms the accuracy of the present model in treating the
non-linear terms. Also the simulation of deep-water wave propagation illustrates that the
improved dispersion relationship is well resolved by the model. The model is still limited to
weakly dispersive systems, so that the higher harmonic free waves that appear at the back of
the submerged bar cannot be captured accurately by the present model.

It is straightforward to extend the present Petrov–Galerkin FEM to a two-dimensional
domain with non-uniform structured quadrilateral grids [27]. However, applying this method
to unstructured grids would be quite challenging. Recently, attempts have been made to
develop piecewise C1-type functions over unstructured meshes [28,29]. In our opinion, it is
possible to extend the present approach to a two-dimensional domain with unstructured grids,
although the computational costs for mapping the C1-type weighting function over an
unstructured mesh need to be carefully considered.
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Figure 15. Comparisons of amplitude spectrum of measured data and present FEM solutions: — present
numerical result; · · · experiment.
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APPENDIX A. MASS MATRIX, FORCING VECTOR AND BOUNDARY VECTOR

Let us introduce the following notations:

�j
p�

dp�j

dxp

�j
p�

dp�j

dxp

in which �j is the weighting function and �j the shape function. The superscript means the
order of derivative. When p is zero

�j
0�

d0�j

dx0 ��j

is implied. Therefore, the superscript 0 will be omitted.
The mass matrices in (3.7) and (3.8) can be defined as

[Mu]ijn = [M1
u]ij+�2[M2

u]ij+��2[M� 1
u]ijn +�2�2[M� 2

u]ijn (A.1)

where

[M1
u]ij= [M�]ij=��i�j� (A.2)

[M2
u]ij= −C4 �

k

��i�k
1�j

1�({h}k)2−� �
k

�
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��i�k
1�l

1�j�{h}k{h}l

−C5 �
k

��i
1�k�j

1�({h}k)2−
�

2
�
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��i
1�k

1�j�({h}k)2 (A.3)

[M� 1
u]ijn = −�

k

�
l

��i
1�k�l

1�j�{h}k{�}l
n−�

k

��i
2�k�j�{h}k{�}k

n (A.4)

[M� 2
u]ijn = −

1
2

�
k

��i
1�k

1�j�({�}k
n)2−

1
2

�
k

��i
2�k�j�({�}k

n)2 (A.5)

in which � · � denotes xj

xj+1 ·dx and �k denotes �k=0
J .

The forcing vectors in (3.7) and (3.8) have the following expressions:

{ f n}i
n={ f1

n}i
n+�{ f2

n}i
n+�2{ f3

n}i
n+��2{ f4

n}i
n+�2�2{ f5

n}i
n+�3�2{ f6

n}i
n (A.6)

{ f u}i
n={ f1

u}i
n+�{ f2

u}i
n+��2{ f3

u}i
n+�2�2{ f4

u}i
n+�3�2{ f5

u}i
n (A.7)
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in which
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We have used the product approximation technique for the non-linear terms as shown in,
for example, (A.9). The weak forms (3.3) and (3.4) have been written in such a way that they
contain the divergence form as much as possible so as to apply the product approximation
technique for the higher non-linear terms.

Finally, the boundary vectors in (3.7) and (3.8) can be expressed as

{q�}i
n={q1
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n+�{q2

�}i
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�}i
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n (A.19)
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